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The evolution of a cluster of floating passive impurity on the surface of a turbulent flow of liquid is investigated in the one- 
dimensional approximation. A cluster localization effect is established which consists of the fact that the particles form an 
agglomeration of increased concentration with time. The evolution with time of the random width of the cluster is investigated. 
The physical mechanism of the localization phenomenon is discussed. © 2000 Elsevier Science Ltd. All rights reserved. 

Under practical conditions, the diffusion of a floating impurity on the surface of a liquid, for example, on the ocean 
surface, is accompanied by chaotic motion of the impurity particles together with the liquid. Neglecting the effect 
of vertical motions of the liquid on the floating impurity, we will assume that the impurity particles are completely 
carried away by the random two-dimensional velocity field v(x, t) - the projection of the velocity vector of the liquid 
onto its plane free surface [1]. Here x are the coordinates of points of the free surface. The surface concentration 
of impurity p(x, t) is then described by the convective diffusion equation 

P+  (v(x, t)- V)p + pu(x, t) = ~tnp 

Here we have introduced the scalar field u(x, t) = (~7- v(x, t) - the divergence of the two-dimensional velocity field 
of the liquid v(x, t) on the free surface and/z is the molecular diffusion coefficient. 

We emphasize that on the surface of even an incompressible liquid the divergence of the vector of the horizontal 
components of the liquid velocity, generally speaking (when the rate of change of the vertical component of the 
velocity directed along the normal to the surface is non-zero), is not equal to zero. Physically this means that the 
surface of a chaotically moving incompressible liquid behaves as a two-dimensional compressible medium. An, at 
first glance, unexpected effect then arises in which the clusters of floating impurity are localized, which is related 
to the well-known effect of the localization of waves in random multilayered media (see, for example, [2]). Some 
quantitative and qualitative aspects of the localization of the floating impurities were discussed in [1, 3, 4]. The 
related effects of occurrence of a quasi-regular coarse-scale structure in the distribution of material in the universe 
have been widely discussed in the astrophysical literature (see, for example, [5-8]). 

In our opinion, this impurity localization effect in chaotically moving media has a universal character and is 
inherent in differen~t kinds of random flows of compressible media. Below we give a quantitative description of 
the localization effect in the simplest case of a one-dimensional medium, which models the evolution of the 
concentration of a floating impurity on the surface of a liquid in a narrow channel. The results obtained many be 
useful when investigating and analysing localization effects in spaces of large dimensionality. 

1. T H E  . A S Y M P T O T I C  F O R M  O F  T H E  C O N C E N T R A T I O N  F I E L D  O F  
F L O A T I N G  I M P U R I T Y  IN  A O N E - D I M E N S I O N A L  M E D I U M  

We will discuss the behaviour  of  a cluster of  floating particles on the surface o f  a turbulent flow of  liquid 
in a channel.  We will consider  the idealized case when the mot ion  o f  the liquid is across the channel  
and there is no  transverse diffusion of  the impurity particles. We will correspondingly assume that  the 
field of  the horizontal  velocity of  mot ion  of  the liquid along channel  ~(x, t) and the concentra t ion of  
floating impuri ty particles p(x, t) are functions of  time and only one coordinate  (the longitudinal 
coordinate)  x. The  concentra t ion o f  a cluster p(x, t) then obeys the one-dimensional  convective diffusion 
equat ion 

ap a a2p 
+~ 'x  (u (x, t)p) = I.t 0-~-, p(x, t = 0) = P0 (x) (1.1) 
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To describe the random field u(x, t) we will use the well-known Kraichnan approximation [9, 10] of the 
velocity field by a Gaussian statistically uniform field, delta-correlated in time, with a structure function 

([u (x, t) - u  (x + s, t +'c)] 2 } = d(s)8('c), d(s) = Bs 2 +... (1.2) 

We will first construct the approximate solution of Eq. (1.1) for which we write the solution in the form 

9(x, t) = ~(x, t) (1.3) 

where 15(x, t) satisfies the first-order subsidiary equation 

a 
a'-7 + ~xx (u (x, t)p) = g(t) (1.4) 

Here ~(t) is Gaussian white noise with correlation function t~(t)~(t + r) = 2~8('r), while the bar denotes 
averaging over the ensemble of samples ~(t). 

As is well known, the solution of Eq. (1.4) can be represented in the form 

p(x, t) = J p0(y)~5(2(y, t ) -  x)dy (1.5) 

where )?(y, t) is the trajectory of a particle, taking molecular diffusion into account, which satisfies the 
stochastic equation 

dR 
=u ()(, t) + ~(t) (1.6) dt 

We will represent the function )?(y, t) in the form of the sum of two terms 

f((y, t) = X(y, t) + z(y, t) (1.7) 

Here X(y, t) describes the convective transfer of floating particles (when/z = 0) while z(y, t) takes into 
account the deviation of particle from X(y, t) due to molecular diffusion and is subject to the equation 

dz 
- - = u ( S + z , t ) - u ( X , t ) + ~ ( t ) ,  z (y , t=O)=O (1.8) 
dt 

Suppose Iu is the characteristic scale of the spatial change in the random velocity field ~(x, t). We 
will assume that the following inequality is satisfied 

z "< Iv (1.9) 

which henceforth enables us, in a statistical description of the velocity field, to retain only the first non- 
zero term of the expansion of the structure function (1.2). If this is the case, the equation for z0', t) can 
be replaced by the simpler linear equation 

/)u 
dZ=u(X't)z+~(t)'dt z(y , t=O)=O, u(x , t )=~x  (x,t) (1.10) 

In this linear approximation and for a velocity field ~(x, t) specified in advance, the process z(y, t) is 
Gaussian with zero mean and variance cr2(y, t), which satisfies the equation 

da  2 
=2u(X,t)t~2+2g , ~2(Y ' t = O ) = O  (1.11) 

dt 

Substituting expression (1.7) into (1.5) and averaging the expression obtained over the Gaussian 
statistics of the process z0', t), we arrive at an asymptotic formula for the concentration field of the 
floating impurity, taking into account the convective transfer of particles and molecular diffusion 

[ (.-X(y,,))=]ay 
p(x, t) = J Po(Y) 2~t~(y ,  t) exp - 2t~2(y, t) (1.12) 
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2. THE E V O L U T I O N  OF THE E F F E C T I V E  W I D T H  OF 
A C L U S T E R  OF F L O A T I N G  P A R T I C L E S  

Suppose the particles of floating impurity are situated at the point x = 0 at t = 0. Their initial con- 
centration is then equal to p0(x) = 8(x), while the concentration field (1.12) has the form 

, / p(x,t)=R(x-X(t),t), R ( x , t ) = ~ e x  2~-(t ) (2.1) 

Here X(t) = X(0, t) is the position of the centre of the cluster at the current instant of time, t, R(x, t) 
is the concentration of the cluster in a frame of reference moving together with the cluster, and 
tr(t) = tr(0, t) is the effective width of the cluster at the instant t. 

We will investigate the behaviour of the random effective width of the cluster tr(t) with time. It follows 
from stochastic equation (1.11) and also from (1.2) that tr(t) is a Markov process, the probability 
distribution of which 

f(a; 0 = (8(~(t) - ~)) 

satisfies the Fokker--Planck equation [3] 

a (/]_B f(ty,  t = 0)  = ~(ty) (2.2) 

The statistical and clynamic interpretation of the consequences of this equation enables us to understand 
the effect of the competing action of molecular diffusion and the chaotic motion of the liquid surface 
on the behaviour of the cluster of floating particles. It follows from Eq. (2.2), in particular, that the 
root mean square of the effective width of a cluster satisfies the equation 

,4/,.,C z)  = 2 p  + B(C 2), ((~2 (t = 0)) = 0 
dt 

the solution of which 

((Y2 (t = 0)) = I X2( R(x' t))dx = - ~ [ e x p ( B t ) -  1] (2.3) 

has a clear physical interpretation: at short times, so long as Bt ~ 1, the effect of molecular diffusion 
on the effective width of the cluster predominates, while the square of the effective width of the cluster 
increase in accordance with the classical linear relation (tr2(t)) = 2p, t. Later, contraction and expansion, 
due to the chaotic motions of the surface of the turbulent liquid flow begin to have an effect, as a result 
of which (cr2(t)) begins to increase more rapidly, and at times Bt ~ 1 the linear growth changes to an 
exponential growth. 

Subsequently, when the value of (tr2(t)) becomes comparable with the square of the characteristic 
scale lv of the veloc, ity u(x, t) of the turbulent motion of the liquid, the motion of the particles can be 
assumed to be practically independent of one another, formula (2.3) becomes inapplicable, and the 
effective width of the cluster again increases linearly [11] <(r2(t)) = 2(D + ~)t, where D is the turbulent 
diffusion coefficient. 

Note further that the dimensionless parameter, the smallness of which ensures that asymptotic solution 
(2.1) and all subsecluent calculations hold, is the ratio 

= 2p/(B , z) 

i.e. the ratio of the coefficient on the right-hand side of (2.3) to the square of the characteristic scale 
of turbulence. 

Note that the conclusions drawn regarding the behaviour of the cluster, based on an analysis of the 
root mean square of the effective width of the cluster (2.3) and its other moments, may not reflect the 
true behaviour of the cluster with time (see, for example, [1]). A more accurate analysis must be based 
on a discussion of the probability properties of the effective width of the cluster. 

We can convince ourselves of this by investigating some probability consequences of Eq. (2.2). In 
Fig. 1 we show the results of a numerical solution of this equation with the initial condition fl(tr/l; 
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t = O) = ~(cr/l - 1), where I = ~l (pJB)  is a parameter which has the dimension of length. It can be seen 
that the solution approaches a steady distribution (the dashed curve in Fig. 1), describing the statistics 
of the effective width of the cluster for long times. This steady distribution can be obtained analytically 

:.(o>=:im:(,,;,>= ) (2.4) 

The presence of steady distribution (2.4) indicates that the turbulent motion of the medium mainly 
weakness the molecular diffusion and leads to localization of the cluster. In fact, by averaging the cluster 
concentration (2.1) using probability distribution (2.4), we obtain that the average profile of the concen- 
tration is quite well localized on the x axis (see also the graph on the right in Fig. 1) 

1 l 
(R**(x)) = ,-~-lim(R(x' t)) = rr x 2 +I 2 (2.5) 

We emphasize, however, that this expression does not contradict the fact that the root mean square 
effective width of the cluster (2.3) tends to infinity as t ~ ~o since the integral defining it (the first equation 
of (2.3)) diverges. 

Localization of the cluster also leads to the fact that the maximum concentration value 

p = R ( x  = O, t)  = I I ( -q t -~a ( t ) )  

does not tend monotonically to zero with time, as in the case of Brownian floating particles on the surface 
of a liquid at rest, and has the steady distribution 

W(P)=~rn reXp-  , r =  l ~ -  ~ 

3. THE P H Y S I C A L  M E C H A N I S M  OF THE C L U S T E R  
L O C A L I Z A T I O N  E F F E C T  

We will examine in more detail the mechanism by which clusters of floating particles are localized on 
the surface of a chaotically moving medium. To do this we note that quantity z ( x )  = z(O,  t )  has a clear 
physical meaning. This random departure of a certain particle of the cluster from its centre is closely 
related to the dispersion function (the Jacobian of the transition from Lagrange y-coordinates to Euler 
x-coordinates) 

J ( t )  = OX/dy 

which satisfies the following equation in the one-dimensional case considered 

rid~dr = u(X,  t l l  (3.1) 
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In fact, the solutiion of stochastic equation (3.1) 

t 

z(t) = J ~(t ' )J( t ,  t ' )d t '  
0 

(3.2) 

where J(t, t ' )  is the solution of Eq. (3.1) with initial condition J(t = t') = 1, has a clear geometrical 
interpretation: expression (3.2) is the sum of the generating Brownian motion of"microscopic impacts" 
~(t'), multiplied by the degree of contraction (when J < 1) or expansion (J > 1) of the cluster of particles. 
In the case of a liqLuid at rest J -= 1, while integral (3.2) describes classical Brownian motion. In the 
general case, the motion of the liquid, which leads to random contractions and expansions of the cluster, 
may qualitatively change the cluster particle diffusion process. A similar assertion holds with regard to 
trz(t) - the variance of the departure of cluster particles from its centre. By relations (1.11) and (3.1) 
it is equal to 

t 

a2(t) = 2p.~ J2(t, t ' )dt '  (3.3) 
0 

and is also determined by the behaviour of the function J(t, t'). 
We will discuss its properties in more detail. In the delta-correlated approximation of the velocity 

field u(x, t) considered, the function J(t, t ')  is a Markov process, the probability distribution of which 

oo • f(j, t, t ) = (8(J(t, t')- j)) 

satisfies the Fokker-Planck equation [1, 3, 4] 

Of _ B a2 ( j 2 f ) ,  f ( j ; t  = t', t ') = 5 ( j -  1) (3.4) 
"~'t- aj 2 

We will investigatc the behaviour of samples of J(t, t'), for which we will use the method proposed 
previously [3], namely we will identify J(t, t ')  with a statisticality equivalent process, which satisfies the 
model stochastic equation 

dJ m + BJ = rl(t)J, J(t  = t', t ') = 1 (3.5) 
dt 

where -q(t) is white noise with correlation function ('q(t)'q(t + T)) = 2BS(,r). The basis of replacing 
J(t, t ')  by a statistically equivalent process is the fact that the probability distribution of the solution of 
stochastic equation (3.5) satisfies Eq. (3.4). In this case it is natural to expect that the properties of 
samples of the process J(t, t ') and the statistically equivalent process will be the same. 

We draw attention to the last term on the left-hand side of Eq. (3.5), since it is precisely this term 
that is responsible for the localization of clusters of floating impurity. This term takes into account the 
fact that, in the case of a Gaussian field ~(x, t) with structure function (1.2), the average of the divergence 
of the velocity fieldl at the cluster centre, whenx = X(t) ,  is negative [3, 4]; (u(X(t) ,  t)) = -B .  This equality 
indicates that random horizontal motions of the liquid surface often contracts the cluster rather than 
expand it, which also leads in a finite time to localization. 

The solution of Eq. (3.5) has the form 

J(t,  t') = exp(-0 + tO(t, t')), 
! 

tO(t, t ') = ~ rl('C)dx, 0 = B(t - t ') 
,, (3.6) 

where to(t, t ') is a Wiener process with a variance of 20. 
Samples of the process J(t, t ') (3.6) possess superficial contradictory statistical properties. Its moments 

(J"( t ,  t')) = exp(n(n - 1)0) (3.7) 

when n > 1 grow exponentially with time. On the other hand, the log-normal probability distribution 
of the process J(t, t ')  
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has a median ./'max = exp(-0),  which approaches zero exponentially. This denotes that the random 
quantity J(t, t') takes values close toj  = 0 with time with greater and greater probability (this combination 
of contradictory statistical properties is characteristic for intermittent processes [12, 13]). 

The exponential increase in the moments (3.7) is due to the presence of high peaks in some samples 
of J(t, t'). On the other hand, a large part of the samples of J(t, t') approaches zero with time. This 
conclusion is confirmed by the presence of majorant curves which fall exponentially to zero [1-3, 12] 

M(t) =A exp (-rBt), A > 1, 0 < r < 1 (3.8) 

below which there are samples of the process J(t, t'). The latter property of the samples ofJ(t, t') ensures 
the existence of the steady distribution (2.4) of the random effective width of the cluster and the 
occurrence of localization of the cluster due to competition between molecular diffusion and convective 
chaotic motion of the particles of floating impurity. 

Figure 2 shows a typical graph of a sample of the process j2(t) = j2(t, t' = 0), which illustrates the 
behaviour of the integrand in expression (3.3), which defines the evolution of the random effective width 
of a cluster. It can be seen that j2(t) falls to zero with time, leading to asymptotic stationarity of the 
effective width of a cluster, which the graphs of the time dependence of three samples of the effective 
width of a cluster, shown on the right of Fig. 2, demonstrate (we have chosen a logarithmic scale along 
the vertical coordinate because of the large spread in the values of cr(t) in different samples). 
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